Recoding data + rowwise/columnwise operations

Lecture 10

Dr. Benjamin Soltoff

Cornell University
INFO 2950 - Spring 2024

February 22, 2024

Announcements

Announcements

  • Project proposals
  • Lab 03

Configure your Git

usethis::use_git_config(
  user.name = "Your name", 
  user.email = "Email associated with your GitHub account"
  )

If you don’t run this command, we don’t know who you are when you make a commit.

Note

The “Workflow & formatting” component assesses the reproducible workflow. This includes:

  • Having at least 3 informative commit messages
  • Each team member contributing to the repo with commits at least once
  • Following tidyverse code style
  • All code being visible in rendered PDF (no more than 80 characters)
  • The issue being closed with a commit message

Meet the Palmer penguins

Meet the Palmer penguins

penguins

library(palmerpenguins)
glimpse(penguins)
Rows: 344
Columns: 8
$ species           <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, Adel…
$ island            <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse…
$ bill_length_mm    <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, …
$ bill_depth_mm     <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, …
$ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186…
$ body_mass_g       <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, …
$ sex               <fct> male, female, female, NA, female, male, female, male…
$ year              <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007…

Rowwise operations

Motivation

What is the sum of bill length and bill depth?

penguins_s <- penguins |>
  select(species, bill_length_mm, bill_depth_mm)

penguins_s |>
  mutate(
    bill_sum = bill_depth_mm + bill_length_mm
  )
# A tibble: 344 × 4
   species bill_length_mm bill_depth_mm bill_sum
   <fct>            <dbl>         <dbl>    <dbl>
 1 Adelie            39.1          18.7     57.8
 2 Adelie            39.5          17.4     56.9
 3 Adelie            40.3          18       58.3
 4 Adelie            NA            NA       NA  
 5 Adelie            36.7          19.3     56  
 6 Adelie            39.3          20.6     59.9
 7 Adelie            38.9          17.8     56.7
 8 Adelie            39.2          19.6     58.8
 9 Adelie            34.1          18.1     52.2
10 Adelie            42            20.2     62.2
# ℹ 334 more rows

What if we have more columns?

Use sum()

penguins_s |>
  mutate(
    bill_sum = sum(bill_depth_mm, bill_length_mm)
  )
# A tibble: 344 × 4
   species bill_length_mm bill_depth_mm bill_sum
   <fct>            <dbl>         <dbl>    <dbl>
 1 Adelie            39.1          18.7       NA
 2 Adelie            39.5          17.4       NA
 3 Adelie            40.3          18         NA
 4 Adelie            NA            NA         NA
 5 Adelie            36.7          19.3       NA
 6 Adelie            39.3          20.6       NA
 7 Adelie            38.9          17.8       NA
 8 Adelie            39.2          19.6       NA
 9 Adelie            34.1          18.1       NA
10 Adelie            42            20.2       NA
# ℹ 334 more rows

What went wrong?

Rowwise operations

penguins_s |>
  rowwise() |>
  mutate(
    bill_sum = sum(bill_depth_mm, bill_length_mm)
  )
# A tibble: 344 × 4
# Rowwise: 
   species bill_length_mm bill_depth_mm bill_sum
   <fct>            <dbl>         <dbl>    <dbl>
 1 Adelie            39.1          18.7     57.8
 2 Adelie            39.5          17.4     56.9
 3 Adelie            40.3          18       58.3
 4 Adelie            NA            NA       NA  
 5 Adelie            36.7          19.3     56  
 6 Adelie            39.3          20.6     59.9
 7 Adelie            38.9          17.8     56.7
 8 Adelie            39.2          19.6     58.8
 9 Adelie            34.1          18.1     52.2
10 Adelie            42            20.2     62.2
# ℹ 334 more rows

rowwise() is equivalent to group_by() every row

Selection helpers

penguins_s <- penguins |>
  select(
    species,
    starts_with("bill")
  )

penguins_s |>
  rowwise() |>
  mutate(
    bill_sum = sum(c_across(starts_with("bill")))
  )
# A tibble: 344 × 4
# Rowwise: 
   species bill_length_mm bill_depth_mm bill_sum
   <fct>            <dbl>         <dbl>    <dbl>
 1 Adelie            39.1          18.7     57.8
 2 Adelie            39.5          17.4     56.9
 3 Adelie            40.3          18       58.3
 4 Adelie            NA            NA       NA  
 5 Adelie            36.7          19.3     56  
 6 Adelie            39.3          20.6     59.9
 7 Adelie            38.9          17.8     56.7
 8 Adelie            39.2          19.6     58.8
 9 Adelie            34.1          18.1     52.2
10 Adelie            42            20.2     62.2
# ℹ 334 more rows

Selection helpers

  • starts_with(): Starts with a prefix
  • ends_with(): Ends with a suffix
  • contains(): Contains a literal string
  • num_range(): Matches a numerical range like x01, x02, x03
  • one_of(): Matches variable names in a character vector
  • everything(): Matches all variables
  • last_col(): Select last variable, possibly with an offset
  • matches(): Matches a regular expression (a sequence of symbols/characters expressing a string/pattern to be searched for within text)
  • c_across(): Use a tidy selector within a non-selecting function (e.g. sum())

Working with multiple columns

Summarizing columns individually

penguins |>
  summarize(
    distinct_species = n_distinct(species),
    distinct_island = n_distinct(island),
    distinct_sex = n_distinct(sex)
  )
# A tibble: 1 × 3
  distinct_species distinct_island distinct_sex
             <int>           <int>        <int>
1                3               3            3

A cute round fuzzy monster with fairy wings and a wand, with a party hat on reading 'mean', bouncing across the top of a data table applying the function to each column. Stylized text reads: 'dplyr::across() - use within mutate() or summarize() to apply function(s) to a selection of columns!' An example shows the use within summarize: summarize(across(where(is.numeric), mean)). Learn more about dplyr::across().

Summarizing columns iteratively

penguins |>
  summarize(
    across(
      .cols = c(species, island, sex),
      .fns = n_distinct
    )
  )
# A tibble: 1 × 3
  species island   sex
    <int>  <int> <int>
1       3      3     3

across() + selector helpers

penguins |> summarize(across(everything(), n_distinct))
# A tibble: 1 × 8
  species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
    <int>  <int>          <int>         <int>             <int>       <int>
1       3      3            165            81                56          95
# ℹ 2 more variables: sex <int>, year <int>
penguins |> summarize(across(starts_with("bill"), n_distinct))
# A tibble: 1 × 2
  bill_length_mm bill_depth_mm
           <int>         <int>
1            165            81
penguins |> summarize(across(contains("length"), n_distinct))
# A tibble: 1 × 2
  bill_length_mm flipper_length_mm
           <int>             <int>
1            165                56
penguins |> summarize(across(where(is.numeric), n_distinct))
# A tibble: 1 × 5
  bill_length_mm bill_depth_mm flipper_length_mm body_mass_g  year
           <int>         <int>             <int>       <int> <int>
1            165            81                56          95     3

Implementing anonymous functions

  • In-line functions
  • Lambda (anonymous) functions

Count number of missing values per column

penguins |>
  summarize(
    across(
      .cols = everything(),
      .fns = \(x) sum(is.na(x))
    )
  )
# A tibble: 1 × 8
  species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
    <int>  <int>          <int>         <int>             <int>       <int>
1       0      0              2             2                 2           2
# ℹ 2 more variables: sex <int>, year <int>

Multiple summarize operations

penguins |>
  drop_na() |>
  summarize(
    across(
      .cols = where(is.numeric),
      .fns = list(mean = mean, sd = sd),
      .names = "{.fn}_{.col}"
    )
  )
# A tibble: 1 × 10
  mean_bill_length_mm sd_bill_length_mm mean_bill_depth_mm sd_bill_depth_mm
                <dbl>             <dbl>              <dbl>            <dbl>
1                44.0              5.47               17.2             1.97
# ℹ 6 more variables: mean_flipper_length_mm <dbl>, sd_flipper_length_mm <dbl>,
#   mean_body_mass_g <dbl>, sd_body_mass_g <dbl>, mean_year <dbl>,
#   sd_year <dbl>

Bring back anonymous functions

penguins |>
  summarize(
    across(
      .cols = where(is.numeric),
      .fns = list(
        mean = \(x) mean(x, na.rm = TRUE),
        sd = \(x) sd(x, na.rm = TRUE)
      ),
      .names = "{.fn}_{.col}"
    )
  )
# A tibble: 1 × 10
  mean_bill_length_mm sd_bill_length_mm mean_bill_depth_mm sd_bill_depth_mm
                <dbl>             <dbl>              <dbl>            <dbl>
1                43.9              5.46               17.2             1.97
# ℹ 6 more variables: mean_flipper_length_mm <dbl>, sd_flipper_length_mm <dbl>,
#   mean_body_mass_g <dbl>, sd_body_mass_g <dbl>, mean_year <dbl>,
#   sd_year <dbl>

Do it within groups

penguins |>
  group_by(species) |>
  summarize(
    across(
      .cols = where(is.numeric),
      .fns = list(
        mean = \(x) mean(x, na.rm = TRUE),
        sd = \(x) sd(x, na.rm = TRUE)
      ),
      .names = "{.fn}_{.col}"
    )
  )
# A tibble: 3 × 11
  species   mean_bill_length_mm sd_bill_length_mm mean_bill_depth_mm
  <fct>                   <dbl>             <dbl>              <dbl>
1 Adelie                   38.8              2.66               18.3
2 Chinstrap                48.8              3.34               18.4
3 Gentoo                   47.5              3.08               15.0
# ℹ 7 more variables: sd_bill_depth_mm <dbl>, mean_flipper_length_mm <dbl>,
#   sd_flipper_length_mm <dbl>, mean_body_mass_g <dbl>, sd_body_mass_g <dbl>,
#   mean_year <dbl>, sd_year <dbl>

Modify columns

penguins |>
  mutate(
    across(
      .cols = ends_with("mm"),
      .fns = \(x) scale(x) |> as.numeric()
    )
  )
# A tibble: 344 × 8
   species island    bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
   <fct>   <fct>              <dbl>         <dbl>             <dbl>       <int>
 1 Adelie  Torgersen         -0.883         0.784            -1.42         3750
 2 Adelie  Torgersen         -0.810         0.126            -1.06         3800
 3 Adelie  Torgersen         -0.663         0.430            -0.421        3250
 4 Adelie  Torgersen         NA            NA                NA              NA
 5 Adelie  Torgersen         -1.32          1.09             -0.563        3450
 6 Adelie  Torgersen         -0.847         1.75             -0.776        3650
 7 Adelie  Torgersen         -0.920         0.329            -1.42         3625
 8 Adelie  Torgersen         -0.865         1.24             -0.421        4675
 9 Adelie  Torgersen         -1.80          0.480            -0.563        3475
10 Adelie  Torgersen         -0.352         1.54             -0.776        4250
# ℹ 334 more rows
# ℹ 2 more variables: sex <fct>, year <int>

Rename output columns

penguins |>
  mutate(across(
    .cols = ends_with("mm"),
    .fns = \(x) scale(x) |> as.numeric(),
    .names = "{.col}_sc"
  )) |>
  select(contains("mm"))
# A tibble: 344 × 6
   bill_length_mm bill_depth_mm flipper_length_mm bill_length_mm_sc
            <dbl>         <dbl>             <int>             <dbl>
 1           39.1          18.7               181            -0.883
 2           39.5          17.4               186            -0.810
 3           40.3          18                 195            -0.663
 4           NA            NA                  NA            NA    
 5           36.7          19.3               193            -1.32 
 6           39.3          20.6               190            -0.847
 7           38.9          17.8               181            -0.920
 8           39.2          19.6               195            -0.865
 9           34.1          18.1               193            -1.80 
10           42            20.2               190            -0.352
# ℹ 334 more rows
# ℹ 2 more variables: bill_depth_mm_sc <dbl>, flipper_length_mm_sc <dbl>

across() not always needed

penguins |>
  select(where(is.numeric))
# A tibble: 344 × 5
   bill_length_mm bill_depth_mm flipper_length_mm body_mass_g  year
            <dbl>         <dbl>             <int>       <int> <int>
 1           39.1          18.7               181        3750  2007
 2           39.5          17.4               186        3800  2007
 3           40.3          18                 195        3250  2007
 4           NA            NA                  NA          NA  2007
 5           36.7          19.3               193        3450  2007
 6           39.3          20.6               190        3650  2007
 7           38.9          17.8               181        3625  2007
 8           39.2          19.6               195        4675  2007
 9           34.1          18.1               193        3475  2007
10           42            20.2               190        4250  2007
# ℹ 334 more rows
penguins |>
  select(across(where(is.numeric)))
Error in `select()`:
! Problem while evaluating `across(where(is.numeric))`.
Caused by error in `across()`:
! Must only be used inside data-masking verbs like `mutate()`,
  `filter()`, and `group_by()`.

Application exercise

ae-08

  • Go to the course GitHub org and find your ae-08 (repo name will be suffixed with your GitHub name).
  • Clone the repo in RStudio Workbench, open the Quarto document in the repo, and follow along and complete the exercises.
  • Render, commit, and push your edits by the AE deadline – end of tomorrow

Recap

  • Use rowwise() to perform calculations within rows of data frames
  • Column-wise operations can be performed using across()
  • Make use of lambda/anonymous functions to perform custom operations on-the-fly

Please don’t be bad