library(tidyverse)
AE 03: Wrangling college education metrics
Suggested answers
These are suggested answers. This document should be used as reference only, it’s not designed to be an exhaustive key.
To demonstrate data wrangling we will use data from College Scorecard.1 The subset we will analyze contains a small number of metrics for all four-year colleges and universities in the United States for the 2021-22 academic year. 2
The data is stored in scorecard.csv
. The variables are:
unit_id
- Unit ID for institutionname
- Name of the collegestate
- State abbreviationtype
- Type of college (Public; Private, nonprofit; Private, for-profit)adm_rate
- Undergraduate admissions rate (from 0-100%)sat_avg
- Average SAT equivalent score of students admittedcost
- The average annual total cost of attendance, including tuition and fees, books and supplies, and living expensesnet_cost
- The average annual net cost of attendance (annual cost of attendance minus the average grant/scholarship aid)avg_fac_sal
- Average faculty salary (9 month)pct_pell
- Percentage of undergraduates who receive a Pell Grantcomp_rate
- Rate of first-time, full-time students at four-year institutions who complete their degree within six yearsfirst_gen
- Share of first-generation studentsdebt
- Median debt of students after leaving schoollocale
- Locale of institution
<- read_csv("data/scorecard.csv") scorecard
The data frame has over 1700 observations (rows), 1719 observations to be exact, so we will not view the entire data frame. Instead we’ll use the commands below to help us explore the data.
glimpse(scorecard)
Rows: 1,719
Columns: 14
$ unit_id <dbl> 100654, 100663, 100706, 100724, 100751, 100830, 100858, 10…
$ name <chr> "Alabama A & M University", "University of Alabama at Birm…
$ state <chr> "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL"…
$ type <chr> "Public", "Public", "Public", "Public", "Public", "Public"…
$ adm_rate <dbl> 0.7160, 0.8854, 0.7367, 0.9799, 0.7890, 0.9680, 0.7118, 0.…
$ sat_avg <dbl> 954, 1266, 1300, 955, 1244, 1069, NA, 1214, 1042, NA, 1111…
$ cost <dbl> 21924, 26248, 24869, 21938, 31050, 20621, 32678, 33920, 36…
$ net_cost <dbl> 13057, 16585, 17250, 13593, 21534, 13689, 23258, 21098, 20…
$ avg_fac_sal <dbl> 79011, 104310, 88380, 69309, 94581, 70965, 99837, 68724, 5…
$ pct_pell <dbl> 0.6853, 0.3253, 0.2377, 0.7205, 0.1712, 0.4821, 0.1301, 0.…
$ comp_rate <dbl> 0.2807, 0.6245, 0.6072, 0.2843, 0.7223, 0.3569, 0.8088, 0.…
$ first_gen <dbl> 0.3658281, 0.3412237, 0.3101322, 0.3434343, 0.2257127, 0.3…
$ debt <dbl> 16600, 15832, 13905, 17500, 17986, 13119, 17750, 16000, 15…
$ locale <chr> "City", "City", "City", "City", "City", "City", "City", "C…
names(scorecard)
[1] "unit_id" "name" "state" "type" "adm_rate"
[6] "sat_avg" "cost" "net_cost" "avg_fac_sal" "pct_pell"
[11] "comp_rate" "first_gen" "debt" "locale"
head(scorecard)
# A tibble: 6 × 14
unit_id name state type adm_rate sat_avg cost net_cost avg_fac_sal pct_pell
<dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 100654 Alab… AL Publ… 0.716 954 21924 13057 79011 0.685
2 100663 Univ… AL Publ… 0.885 1266 26248 16585 104310 0.325
3 100706 Univ… AL Publ… 0.737 1300 24869 17250 88380 0.238
4 100724 Alab… AL Publ… 0.980 955 21938 13593 69309 0.720
5 100751 The … AL Publ… 0.789 1244 31050 21534 94581 0.171
6 100830 Aubu… AL Publ… 0.968 1069 20621 13689 70965 0.482
# ℹ 4 more variables: comp_rate <dbl>, first_gen <dbl>, debt <dbl>,
# locale <chr>
The head()
function returns “A tibble: 6 x 14” and then the first six rows of the scorecard
data.
Tibble vs. data frame
A tibble is an opinionated version of the R
data frame. In other words, all tibbles are data frames, but not all data frames are tibbles!
There are two main differences between a tibble and a data frame:
When you print a tibble, the first ten rows and all of the columns that fit on the screen will display, along with the type of each column.
Let’s look at the differences in the output when we type
scorecard
(tibble) in the console versus typingcars
(data frame) in the console.Second, tibbles are somewhat more strict than data frames when it comes to subsetting data. You will get a warning message if you try to access a variable that doesn’t exist in a tibble. You will get
NULL
if you try to access a variable that doesn’t exist in a data frame.
$apple scorecard
Warning: Unknown or uninitialised column: `apple`.
NULL
$apple cars
NULL
Data wrangling with dplyr
dplyr is the primary package in the tidyverse for data wrangling.
Quick summary of key dplyr functions3
Rows:
filter()
:chooses rows based on column values.slice()
: chooses rows based on location.arrange()
: changes the order of the rowssample_n()
: take a random subset of the rows
Columns:
select()
: changes whether or not a column is included.rename()
: changes the name of columns.mutate()
: changes the values of columns and creates new columns.
Groups of rows:
summarize()
: collapses a group into a single row.count()
: count unique values of one or more variables.group_by()
: perform calculations separately for each value of a variable
Operators
In order to make comparisons, we will use logical operators. These should be familiar from other programming languages. See below for a reference table for how to use these operators in R.
operator | definition |
---|---|
< |
is less than? |
<= |
is less than or equal to? |
> |
is greater than? |
>= |
is greater than or equal to? |
== |
is exactly equal to? |
!= |
is not equal to? |
x & y |
is x AND y? |
x | y |
is x OR y? |
is.na(x) |
is x NA? |
!is.na(x) |
is x not NA? |
x %in% y |
is x in y? |
!(x %in% y) |
is x not in y? |
!x |
is not x? |
The final operator only makes sense if x
is logical (TRUE / FALSE).
The pipe
Before working with data wrangling functions, let’s formally introduce the pipe. The pipe, |>
, is an operator (a tool) for passing information from one process to another. We will use |>
mainly in data pipelines to pass the output of the previous line of code as the first input of the next line of code.
When reading code “in English”, say “and then” whenever you see a pipe.
- Your turn (3 minutes): Run the following chunk and observe its output. Then, come up with a different way of obtaining the same output.
|>
scorecard select(name, type) |>
head()
# A tibble: 6 × 2
name type
<chr> <chr>
1 Alabama A & M University Public
2 University of Alabama at Birmingham Public
3 University of Alabama in Huntsville Public
4 Alabama State University Public
5 The University of Alabama Public
6 Auburn University at Montgomery Public
Exercises
Single function transformations
Demo: Select the name
column.
select(.data = scorecard, name)
# A tibble: 1,719 × 1
name
<chr>
1 Alabama A & M University
2 University of Alabama at Birmingham
3 University of Alabama in Huntsville
4 Alabama State University
5 The University of Alabama
6 Auburn University at Montgomery
7 Auburn University
8 Birmingham-Southern College
9 Faulkner University
10 Herzing University-Birmingham
# ℹ 1,709 more rows
Demo: Select all columns except unit_id
.
select(.data = scorecard, -unit_id)
# A tibble: 1,719 × 13
name state type adm_rate sat_avg cost net_cost avg_fac_sal pct_pell
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Alabama A &… AL Publ… 0.716 954 21924 13057 79011 0.685
2 University … AL Publ… 0.885 1266 26248 16585 104310 0.325
3 University … AL Publ… 0.737 1300 24869 17250 88380 0.238
4 Alabama Sta… AL Publ… 0.980 955 21938 13593 69309 0.720
5 The Univers… AL Publ… 0.789 1244 31050 21534 94581 0.171
6 Auburn Univ… AL Publ… 0.968 1069 20621 13689 70965 0.482
7 Auburn Univ… AL Publ… 0.712 NA 32678 23258 99837 0.130
8 Birmingham-… AL Priv… 0.659 1214 33920 21098 68724 0.215
9 Faulkner Un… AL Priv… 0.646 1042 36457 20371 56439 0.461
10 Herzing Uni… AL Priv… 0.938 NA 31202 26887 59796 0.675
# ℹ 1,709 more rows
# ℹ 4 more variables: comp_rate <dbl>, first_gen <dbl>, debt <dbl>,
# locale <chr>
Demo: Filter the data frame to keep only schools with a greater than 40% share of first-generation students.
filter(.data = scorecard, first_gen > .40)
# A tibble: 355 × 14
unit_id name state type adm_rate sat_avg cost net_cost avg_fac_sal
<dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 101189 Faulkner Uni… AL Priv… 0.646 1042 36457 20371 56439
2 101365 Herzing Univ… AL Priv… 0.938 NA 31202 26887 59796
3 101587 University o… AL Publ… 0.743 1017 22525 16258 60570
4 102270 Stillman Col… AL Priv… 0.758 NA 24540 17127 45990
5 104717 Grand Canyon… AZ Priv… 0.828 NA 31393 21176 62604
6 106467 Arkansas Tec… AR Publ… 0.944 NA 19857 12191 61605
7 107983 Southern Ark… AR Publ… 0.626 1094 23732 15873 63387
8 110361 California B… CA Priv… 0.637 NA 46274 21812 91359
9 110486 California S… CA Publ… 0.852 NA 18172 6821 85212
10 110495 California S… CA Publ… 0.948 NA 17005 6041 86751
# ℹ 345 more rows
# ℹ 5 more variables: pct_pell <dbl>, comp_rate <dbl>, first_gen <dbl>,
# debt <dbl>, locale <chr>
Your turn: Filter the data frame to keep only public schools with a net cost of attendance below $12,000.
filter(.data = scorecard, type == "Public", net_cost < 12000)
# A tibble: 156 × 14
unit_id name state type adm_rate sat_avg cost net_cost avg_fac_sal
<dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 102614 University o… AK Publ… 0.647 1169 19621 9684 86130
2 102632 University o… AK Publ… 0.562 NA 16275 7368 75924
3 106412 University o… AR Publ… 0.675 902 18873 10542 54072
4 110486 California S… CA Publ… 0.852 NA 18172 6821 85212
5 110495 California S… CA Publ… 0.948 NA 17005 6041 86751
6 110510 California S… CA Publ… 0.910 NA 13365 2232 89757
7 110529 California S… CA Publ… 0.606 NA 22108 11740 95004
8 110547 California S… CA Publ… 0.896 NA 14579 3724 88389
9 110556 California S… CA Publ… 0.973 NA 17014 5640 85914
10 110565 California S… CA Publ… 0.594 NA 14182 4211 93177
# ℹ 146 more rows
# ℹ 5 more variables: pct_pell <dbl>, comp_rate <dbl>, first_gen <dbl>,
# debt <dbl>, locale <chr>
filter(.data = scorecard, type == "Public" & net_cost < 12000)
# A tibble: 156 × 14
unit_id name state type adm_rate sat_avg cost net_cost avg_fac_sal
<dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 102614 University o… AK Publ… 0.647 1169 19621 9684 86130
2 102632 University o… AK Publ… 0.562 NA 16275 7368 75924
3 106412 University o… AR Publ… 0.675 902 18873 10542 54072
4 110486 California S… CA Publ… 0.852 NA 18172 6821 85212
5 110495 California S… CA Publ… 0.948 NA 17005 6041 86751
6 110510 California S… CA Publ… 0.910 NA 13365 2232 89757
7 110529 California S… CA Publ… 0.606 NA 22108 11740 95004
8 110547 California S… CA Publ… 0.896 NA 14579 3724 88389
9 110556 California S… CA Publ… 0.973 NA 17014 5640 85914
10 110565 California S… CA Publ… 0.594 NA 14182 4211 93177
# ℹ 146 more rows
# ℹ 5 more variables: pct_pell <dbl>, comp_rate <dbl>, first_gen <dbl>,
# debt <dbl>, locale <chr>
Multiple function transformations
Your turn: How many public colleges and universities in each state have a net cost of attendance below $12,000?
# using group_by() and summarize()
|>
scorecard filter(type == "Public", net_cost < 12000) |>
group_by(state) |>
summarize(n = n())
# A tibble: 35 × 2
state n
<chr> <int>
1 AK 2
2 AR 1
3 CA 18
4 CT 4
5 DE 1
6 FL 12
7 FM 1
8 GA 6
9 IL 4
10 IN 9
# ℹ 25 more rows
# using count()
|>
scorecard filter(type == "Public", net_cost < 12000) |>
count(state)
# A tibble: 35 × 2
state n
<chr> <int>
1 AK 2
2 AR 1
3 CA 18
4 CT 4
5 DE 1
6 FL 12
7 FM 1
8 GA 6
9 IL 4
10 IN 9
# ℹ 25 more rows
Your turn: Generate a data frame with the 10 most expensive colleges in 2021-22 based on net cost of attendance.
We could use a combination of arrange()
and slice()
to sort the data frame from most to least expensive, then keep the first 10 rows:
# using desc()
arrange(.data = scorecard, desc(net_cost)) |>
slice(1:10)
# A tibble: 10 × 14
unit_id name state type adm_rate sat_avg cost net_cost avg_fac_sal
<dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 247649 Landmark Col… VT Priv… 0.529 NA 79200 50759 59148
2 136774 Ringling Col… FL Priv… 0.687 NA 68123 50747 80217
3 197151 School of Vi… NY Priv… 0.713 1251 67606 50183 35478
4 119775 Newschool of… CA Priv… 0.608 NA 55686 48752 60804
5 192712 Manhattan Sc… NY Priv… 0.490 NA 71175 47969 70830
6 449384 Gnomon CA Priv… 0.448 NA 53847 47099 NA
7 214148 Moore Colleg… PA Priv… 0.581 NA 64305 46750 65493
8 197708 Yeshiva Univ… NY Priv… 0.627 NA 65898 46632 115812
9 109651 Art Center C… CA Priv… 0.756 NA 68087 46201 71478
10 111081 California I… CA Priv… 0.290 NA 74931 46083 85995
# ℹ 5 more variables: pct_pell <dbl>, comp_rate <dbl>, first_gen <dbl>,
# debt <dbl>, locale <chr>
# using -
arrange(.data = scorecard, -net_cost) |>
slice(1:10)
# A tibble: 10 × 14
unit_id name state type adm_rate sat_avg cost net_cost avg_fac_sal
<dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 247649 Landmark Col… VT Priv… 0.529 NA 79200 50759 59148
2 136774 Ringling Col… FL Priv… 0.687 NA 68123 50747 80217
3 197151 School of Vi… NY Priv… 0.713 1251 67606 50183 35478
4 119775 Newschool of… CA Priv… 0.608 NA 55686 48752 60804
5 192712 Manhattan Sc… NY Priv… 0.490 NA 71175 47969 70830
6 449384 Gnomon CA Priv… 0.448 NA 53847 47099 NA
7 214148 Moore Colleg… PA Priv… 0.581 NA 64305 46750 65493
8 197708 Yeshiva Univ… NY Priv… 0.627 NA 65898 46632 115812
9 109651 Art Center C… CA Priv… 0.756 NA 68087 46201 71478
10 111081 California I… CA Priv… 0.290 NA 74931 46083 85995
# ℹ 5 more variables: pct_pell <dbl>, comp_rate <dbl>, first_gen <dbl>,
# debt <dbl>, locale <chr>
We can also use the slice_max()
function in dplyr to accomplish the same thing with a single function.
slice_max(.data = scorecard, order_by = net_cost, n = 10)
# A tibble: 10 × 14
unit_id name state type adm_rate sat_avg cost net_cost avg_fac_sal
<dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 247649 Landmark Col… VT Priv… 0.529 NA 79200 50759 59148
2 136774 Ringling Col… FL Priv… 0.687 NA 68123 50747 80217
3 197151 School of Vi… NY Priv… 0.713 1251 67606 50183 35478
4 119775 Newschool of… CA Priv… 0.608 NA 55686 48752 60804
5 192712 Manhattan Sc… NY Priv… 0.490 NA 71175 47969 70830
6 449384 Gnomon CA Priv… 0.448 NA 53847 47099 NA
7 214148 Moore Colleg… PA Priv… 0.581 NA 64305 46750 65493
8 197708 Yeshiva Univ… NY Priv… 0.627 NA 65898 46632 115812
9 109651 Art Center C… CA Priv… 0.756 NA 68087 46201 71478
10 111081 California I… CA Priv… 0.290 NA 74931 46083 85995
# ℹ 5 more variables: pct_pell <dbl>, comp_rate <dbl>, first_gen <dbl>,
# debt <dbl>, locale <chr>
Your turn: Generate a data frame with the average SAT score for each type of college.
Note that since the sat_avg
column contains NA
s (missing values), we need to explicitly exclude them from our mean calculation. Otherwise the resulting data frame contains NA
s.
# incorrect - ignores NAs
|>
scorecard group_by(type) |>
summarize(mean_sat = mean(sat_avg))
# A tibble: 3 × 2
type mean_sat
<chr> <dbl>
1 Private, for-profit NA
2 Private, nonprofit NA
3 Public NA
# exclude NAs using mean()
|>
scorecard group_by(type) |>
summarize(mean_sat = mean(sat_avg, na.rm = TRUE))
# A tibble: 3 × 2
type mean_sat
<chr> <dbl>
1 Private, for-profit 1270.
2 Private, nonprofit 1182.
3 Public 1136.
# exclude NAs using drop_na() to remove the rows prior to summarizing
|>
scorecard drop_na(sat_avg) |>
group_by(type) |>
summarize(mean_sat = mean(sat_avg))
# A tibble: 3 × 2
type mean_sat
<chr> <dbl>
1 Private, for-profit 1270.
2 Private, nonprofit 1182.
3 Public 1136.
Your turn: Calculate for each school how many students it takes to pay the average faculty member’s salary and generate a data frame with the school’s name, net cost of attendance, average faculty salary, and the calculated value. How many Cornell and Ithaca College students does it take to pay their average faculty member’s salary?
You should use the net cost of attendance measure, not the sticker price.
|>
scorecard # mutate() to create a column with the ratio
mutate(ratio = avg_fac_sal / net_cost) |>
# select() to keep only the name and ratio columns
select(name, net_cost, avg_fac_sal, ratio) |>
# filter() to keep only Cornell and Ithaca College
filter(name == "Cornell University" | name == "Ithaca College")
# A tibble: 2 × 4
name net_cost avg_fac_sal ratio
<chr> <dbl> <dbl> <dbl>
1 Cornell University 29011 141849 4.89
2 Ithaca College 33748 81369 2.41
Your turn: Calculate how many private, nonprofit schools have a smaller net cost than Cornell University.
You will need to create a new column that ranks the schools by net cost of attendance. Look at the back of the dplyr cheatsheet for functions that can be used to calculate rankings.
Reported as the number as the total number of schools:
|>
scorecard # keep only private schools and sort by net cost in increasing order
filter(type == "Private, nonprofit") |>
arrange(net_cost) |>
# use row_number() to rank each school by net cost but subtract 1
# since Cornell is not cheaper than itself
mutate(net_cost_rank = row_number() - 1) |>
# examine output for Cornell
filter(name == "Cornell University") |>
select(name, net_cost, net_cost_rank)
# A tibble: 1 × 3
name net_cost net_cost_rank
<chr> <dbl> <dbl>
1 Cornell University 29011 869
Reported as the number as the percentage of schools:
|>
scorecard # keep only private schools
filter(type == "Private, nonprofit") |>
# use percent_rank() to rank each school by net cost in percentiles
mutate(net_cost_rank = percent_rank(net_cost)) |>
# examine output for Cornell
filter(name == "Cornell University") |>
select(name, net_cost, net_cost_rank)
# A tibble: 1 × 3
name net_cost net_cost_rank
<chr> <dbl> <dbl>
1 Cornell University 29011 0.811
::session_info() sessioninfo
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.3.2 (2023-10-31)
os macOS Ventura 13.5.2
system aarch64, darwin20
ui X11
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz America/New_York
date 2024-02-08
pandoc 3.1.1 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
bit 4.0.5 2022-11-15 [1] CRAN (R 4.3.0)
bit64 4.0.5 2020-08-30 [1] CRAN (R 4.3.0)
cli 3.6.2 2023-12-11 [1] CRAN (R 4.3.1)
colorspace 2.1-0 2023-01-23 [1] CRAN (R 4.3.0)
crayon 1.5.2 2022-09-29 [1] CRAN (R 4.3.0)
digest 0.6.34 2024-01-11 [1] CRAN (R 4.3.1)
dplyr * 1.1.4 2023-11-17 [1] CRAN (R 4.3.1)
evaluate 0.23 2023-11-01 [1] CRAN (R 4.3.1)
fansi 1.0.6 2023-12-08 [1] CRAN (R 4.3.1)
fastmap 1.1.1 2023-02-24 [1] CRAN (R 4.3.0)
forcats * 1.0.0 2023-01-29 [1] CRAN (R 4.3.0)
generics 0.1.3 2022-07-05 [1] CRAN (R 4.3.0)
ggplot2 * 3.4.4 2023-10-12 [1] CRAN (R 4.3.1)
glue 1.7.0 2024-01-09 [1] CRAN (R 4.3.1)
gtable 0.3.4 2023-08-21 [1] CRAN (R 4.3.0)
here 1.0.1 2020-12-13 [1] CRAN (R 4.3.0)
hms 1.1.3 2023-03-21 [1] CRAN (R 4.3.0)
htmltools 0.5.7 2023-11-03 [1] CRAN (R 4.3.1)
htmlwidgets 1.6.4 2023-12-06 [1] CRAN (R 4.3.1)
jsonlite 1.8.8 2023-12-04 [1] CRAN (R 4.3.1)
knitr 1.45 2023-10-30 [1] CRAN (R 4.3.1)
lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.3.1)
lubridate * 1.9.3 2023-09-27 [1] CRAN (R 4.3.1)
magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.3.0)
munsell 0.5.0 2018-06-12 [1] CRAN (R 4.3.0)
pillar 1.9.0 2023-03-22 [1] CRAN (R 4.3.0)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.3.0)
purrr * 1.0.2 2023-08-10 [1] CRAN (R 4.3.0)
R6 2.5.1 2021-08-19 [1] CRAN (R 4.3.0)
readr * 2.1.5 2024-01-10 [1] CRAN (R 4.3.1)
rlang 1.1.3 2024-01-10 [1] CRAN (R 4.3.1)
rmarkdown 2.25 2023-09-18 [1] CRAN (R 4.3.1)
rprojroot 2.0.4 2023-11-05 [1] CRAN (R 4.3.1)
rstudioapi 0.15.0 2023-07-07 [1] CRAN (R 4.3.0)
scales 1.2.1 2024-01-18 [1] Github (r-lib/scales@c8eb772)
sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.3.0)
stringi 1.8.3 2023-12-11 [1] CRAN (R 4.3.1)
stringr * 1.5.1 2023-11-14 [1] CRAN (R 4.3.1)
tibble * 3.2.1 2023-03-20 [1] CRAN (R 4.3.0)
tidyr * 1.3.0 2023-01-24 [1] CRAN (R 4.3.0)
tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.3.0)
tidyverse * 2.0.0 2023-02-22 [1] CRAN (R 4.3.0)
timechange 0.2.0 2023-01-11 [1] CRAN (R 4.3.0)
tzdb 0.4.0 2023-05-12 [1] CRAN (R 4.3.0)
utf8 1.2.4 2023-10-22 [1] CRAN (R 4.3.1)
vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.3.1)
vroom 1.6.5 2023-12-05 [1] CRAN (R 4.3.1)
withr 2.5.2 2023-10-30 [1] CRAN (R 4.3.1)
xfun 0.41 2023-11-01 [1] CRAN (R 4.3.1)
yaml 2.3.8 2023-12-11 [1] CRAN (R 4.3.1)
[1] /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library
──────────────────────────────────────────────────────────────────────────────
Footnotes
College Scorecard is a product of the U.S. Department of Education and compiles detailed information about student completion, debt and repayment, earnings, and more for all degree-granting institutions across the country.↩︎
The full database contains thousands of variables from 1996-2022.↩︎
From dplyr vignette↩︎