Building better training data to predict children in hotel bookings

Suggested answers

Application exercise
Answers
Modified

January 6, 2024

Your Turn 1

Unscramble! You have all the steps from our knn_rec- your challenge is to unscramble them into the right order!

Save the result as knn_rec

step_normalize(all_numeric())

recipe(children ~ ., data = hotels)

step_rm(arrival_date)

step_date(arrival_date)

step_downsample(children)

step_holiday(arrival_date, holidays = holidays)

step_dummy(all_nominal_predictors())

step_zv(all_predictors())

Answer:

knn_rec <- recipe(children ~ ., data = hotels) |>
  step_date(arrival_date) |>
  step_holiday(arrival_date, holidays = holidays) |>
  step_rm(arrival_date) |> 
  step_dummy(all_nominal_predictors()) |> 
  step_zv(all_predictors()) |> 
  step_normalize(all_numeric()) |>
  step_downsample(children)
knn_rec
── Recipe ──────────────────────────────────────────────────────────────────────
── Inputs 
Number of variables by role
outcome:    1
predictor: 21
── Operations 
• Date features from: arrival_date
• Holiday features from: arrival_date
• Variables removed: arrival_date
• Dummy variables from: all_nominal_predictors()
• Zero variance filter on: all_predictors()
• Centering and scaling for: all_numeric()
• Down-sampling based on: children

Your Turn 2

Fill in the blanks to make a workflow that combines knn_rec and with knn_mod.

knn_wf <- ______ |> 
  ______(knn_rec) |> 
  ______(knn_mod)
knn_wf

Answer:

knn_wf <- workflow() |> 
  add_recipe(knn_rec) |> 
  add_model(knn_mod)
knn_wf
══ Workflow ════════════════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: nearest_neighbor()

── Preprocessor ────────────────────────────────────────────────────────────────
7 Recipe Steps

• step_date()
• step_holiday()
• step_rm()
• step_dummy()
• step_zv()
• step_normalize()
• step_downsample()

── Model ───────────────────────────────────────────────────────────────────────
K-Nearest Neighbor Model Specification (classification)

Computational engine: kknn 

Your Turn 3

Edit the code chunk below to fit the entire knn_wflow instead of just knn_mod.

set.seed(100)
knn_mod |> 
  fit_resamples(children ~ ., 
                resamples = hotels_folds,
                # print progress of model fitting
                control = control_resamples(verbose = TRUE)) |> 
  collect_metrics()

Answer:

set.seed(100)
knn_wf |> 
  fit_resamples(resamples = hotels_folds,
                control = control_resamples(verbose = TRUE)) |> 
  collect_metrics()
i Fold01: preprocessor 1/1
✓ Fold01: preprocessor 1/1
i Fold01: preprocessor 1/1, model 1/1
✓ Fold01: preprocessor 1/1, model 1/1
i Fold01: preprocessor 1/1, model 1/1 (extracts)
i Fold01: preprocessor 1/1, model 1/1 (predictions)
i Fold02: preprocessor 1/1
✓ Fold02: preprocessor 1/1
i Fold02: preprocessor 1/1, model 1/1
✓ Fold02: preprocessor 1/1, model 1/1
i Fold02: preprocessor 1/1, model 1/1 (extracts)
i Fold02: preprocessor 1/1, model 1/1 (predictions)
i Fold03: preprocessor 1/1
✓ Fold03: preprocessor 1/1
i Fold03: preprocessor 1/1, model 1/1
✓ Fold03: preprocessor 1/1, model 1/1
i Fold03: preprocessor 1/1, model 1/1 (extracts)
i Fold03: preprocessor 1/1, model 1/1 (predictions)
i Fold04: preprocessor 1/1
✓ Fold04: preprocessor 1/1
i Fold04: preprocessor 1/1, model 1/1
✓ Fold04: preprocessor 1/1, model 1/1
i Fold04: preprocessor 1/1, model 1/1 (extracts)
i Fold04: preprocessor 1/1, model 1/1 (predictions)
i Fold05: preprocessor 1/1
✓ Fold05: preprocessor 1/1
i Fold05: preprocessor 1/1, model 1/1
✓ Fold05: preprocessor 1/1, model 1/1
i Fold05: preprocessor 1/1, model 1/1 (extracts)
i Fold05: preprocessor 1/1, model 1/1 (predictions)
i Fold06: preprocessor 1/1
✓ Fold06: preprocessor 1/1
i Fold06: preprocessor 1/1, model 1/1
✓ Fold06: preprocessor 1/1, model 1/1
i Fold06: preprocessor 1/1, model 1/1 (extracts)
i Fold06: preprocessor 1/1, model 1/1 (predictions)
i Fold07: preprocessor 1/1
✓ Fold07: preprocessor 1/1
i Fold07: preprocessor 1/1, model 1/1
✓ Fold07: preprocessor 1/1, model 1/1
i Fold07: preprocessor 1/1, model 1/1 (extracts)
i Fold07: preprocessor 1/1, model 1/1 (predictions)
i Fold08: preprocessor 1/1
✓ Fold08: preprocessor 1/1
i Fold08: preprocessor 1/1, model 1/1
✓ Fold08: preprocessor 1/1, model 1/1
i Fold08: preprocessor 1/1, model 1/1 (extracts)
i Fold08: preprocessor 1/1, model 1/1 (predictions)
i Fold09: preprocessor 1/1
✓ Fold09: preprocessor 1/1
i Fold09: preprocessor 1/1, model 1/1
✓ Fold09: preprocessor 1/1, model 1/1
i Fold09: preprocessor 1/1, model 1/1 (extracts)
i Fold09: preprocessor 1/1, model 1/1 (predictions)
i Fold10: preprocessor 1/1
✓ Fold10: preprocessor 1/1
i Fold10: preprocessor 1/1, model 1/1
✓ Fold10: preprocessor 1/1, model 1/1
i Fold10: preprocessor 1/1, model 1/1 (extracts)
i Fold10: preprocessor 1/1, model 1/1 (predictions)
# A tibble: 2 × 6
  .metric  .estimator  mean     n std_err .config             
  <chr>    <chr>      <dbl> <int>   <dbl> <chr>               
1 accuracy binary     0.739    10 0.00192 Preprocessor1_Model1
2 roc_auc  binary     0.830    10 0.00352 Preprocessor1_Model1

Your Turn 4

Turns out, the same knn_rec recipe can also be used to fit a penalized logistic regression model using the lasso. Let’s try it out!

plr_mod <- logistic_reg(penalty = .01, mixture = 1) |> 
  set_engine("glmnet") |> 
  set_mode("classification")

plr_mod |> 
  translate()
Logistic Regression Model Specification (classification)

Main Arguments:
  penalty = 0.01
  mixture = 1

Computational engine: glmnet 

Model fit template:
glmnet::glmnet(x = missing_arg(), y = missing_arg(), weights = missing_arg(), 
    alpha = 1, family = "binomial")

Answer:

glmnet_wf <- knn_wf |> 
  update_model(plr_mod)

glmnet_wf |> 
  fit_resamples(resamples = hotels_folds) |> 
  collect_metrics()
# A tibble: 2 × 6
  .metric  .estimator  mean     n std_err .config             
  <chr>    <chr>      <dbl> <int>   <dbl> <chr>               
1 accuracy binary     0.828    10 0.00215 Preprocessor1_Model1
2 roc_auc  binary     0.873    10 0.00209 Preprocessor1_Model1

Acknowledgments

sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.3.2 (2023-10-31)
 os       macOS Ventura 13.6.6
 system   aarch64, darwin20
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       America/New_York
 date     2024-04-22
 pandoc   3.1.1 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 package      * version    date (UTC) lib source
 archive        1.1.7      2023-12-11 [1] CRAN (R 4.3.1)
 backports      1.4.1      2021-12-13 [1] CRAN (R 4.3.0)
 bit            4.0.5      2022-11-15 [1] CRAN (R 4.3.0)
 bit64          4.0.5      2020-08-30 [1] CRAN (R 4.3.0)
 broom        * 1.0.5      2023-06-09 [1] CRAN (R 4.3.0)
 class          7.3-22     2023-05-03 [1] CRAN (R 4.3.2)
 cli            3.6.2      2023-12-11 [1] CRAN (R 4.3.1)
 clock          0.7.0      2023-05-15 [1] CRAN (R 4.3.0)
 codetools      0.2-19     2023-02-01 [1] CRAN (R 4.3.2)
 colorspace     2.1-0      2023-01-23 [1] CRAN (R 4.3.0)
 crayon         1.5.2      2022-09-29 [1] CRAN (R 4.3.0)
 data.table     1.14.10    2023-12-08 [1] CRAN (R 4.3.1)
 dials        * 1.2.0      2023-04-03 [1] CRAN (R 4.3.0)
 DiceDesign     1.10       2023-12-07 [1] CRAN (R 4.3.1)
 digest         0.6.34     2024-01-11 [1] CRAN (R 4.3.1)
 dplyr        * 1.1.4      2023-11-17 [1] CRAN (R 4.3.1)
 ellipsis       0.3.2      2021-04-29 [1] CRAN (R 4.3.0)
 evaluate       0.23       2023-11-01 [1] CRAN (R 4.3.1)
 fansi          1.0.6      2023-12-08 [1] CRAN (R 4.3.1)
 fastmap        1.1.1      2023-02-24 [1] CRAN (R 4.3.0)
 forcats      * 1.0.0      2023-01-29 [1] CRAN (R 4.3.0)
 foreach        1.5.2      2022-02-02 [1] CRAN (R 4.3.0)
 furrr          0.3.1      2022-08-15 [1] CRAN (R 4.3.0)
 future         1.33.1     2023-12-22 [1] CRAN (R 4.3.1)
 future.apply   1.11.1     2023-12-21 [1] CRAN (R 4.3.1)
 generics       0.1.3      2022-07-05 [1] CRAN (R 4.3.0)
 ggplot2      * 3.5.0      2024-02-23 [1] CRAN (R 4.3.1)
 glmnet       * 4.1-8      2023-08-22 [1] CRAN (R 4.3.0)
 globals        0.16.2     2022-11-21 [1] CRAN (R 4.3.0)
 glue           1.7.0      2024-01-09 [1] CRAN (R 4.3.1)
 gower          1.0.1      2022-12-22 [1] CRAN (R 4.3.0)
 GPfit          1.0-8      2019-02-08 [1] CRAN (R 4.3.0)
 gtable         0.3.4      2023-08-21 [1] CRAN (R 4.3.0)
 hardhat        1.3.0      2023-03-30 [1] CRAN (R 4.3.0)
 here           1.0.1      2020-12-13 [1] CRAN (R 4.3.0)
 hms            1.1.3      2023-03-21 [1] CRAN (R 4.3.0)
 htmltools      0.5.7      2023-11-03 [1] CRAN (R 4.3.1)
 htmlwidgets    1.6.4      2023-12-06 [1] CRAN (R 4.3.1)
 igraph         1.6.0      2023-12-11 [1] CRAN (R 4.3.1)
 infer        * 1.0.5      2023-09-06 [1] CRAN (R 4.3.0)
 ipred          0.9-14     2023-03-09 [1] CRAN (R 4.3.0)
 iterators      1.0.14     2022-02-05 [1] CRAN (R 4.3.0)
 jsonlite       1.8.8      2023-12-04 [1] CRAN (R 4.3.1)
 kknn         * 1.3.1      2016-03-26 [1] CRAN (R 4.3.0)
 knitr          1.45       2023-10-30 [1] CRAN (R 4.3.1)
 lattice        0.21-9     2023-10-01 [1] CRAN (R 4.3.2)
 lava           1.7.3      2023-11-04 [1] CRAN (R 4.3.1)
 lhs            1.1.6      2022-12-17 [1] CRAN (R 4.3.0)
 lifecycle      1.0.4      2023-11-07 [1] CRAN (R 4.3.1)
 listenv        0.9.0      2022-12-16 [1] CRAN (R 4.3.0)
 lubridate    * 1.9.3      2023-09-27 [1] CRAN (R 4.3.1)
 magrittr       2.0.3      2022-03-30 [1] CRAN (R 4.3.0)
 MASS           7.3-60     2023-05-04 [1] CRAN (R 4.3.2)
 Matrix       * 1.6-1.1    2023-09-18 [1] CRAN (R 4.3.2)
 modeldata    * 1.2.0      2023-08-09 [1] CRAN (R 4.3.0)
 munsell        0.5.1      2024-04-01 [1] CRAN (R 4.3.1)
 nnet           7.3-19     2023-05-03 [1] CRAN (R 4.3.2)
 parallelly     1.36.0     2023-05-26 [1] CRAN (R 4.3.0)
 parsnip      * 1.2.0      2024-02-16 [1] CRAN (R 4.3.1)
 pillar         1.9.0      2023-03-22 [1] CRAN (R 4.3.0)
 pkgconfig      2.0.3      2019-09-22 [1] CRAN (R 4.3.0)
 prodlim        2023.08.28 2023-08-28 [1] CRAN (R 4.3.0)
 purrr        * 1.0.2      2023-08-10 [1] CRAN (R 4.3.0)
 R6             2.5.1      2021-08-19 [1] CRAN (R 4.3.0)
 Rcpp           1.0.12     2024-01-09 [1] CRAN (R 4.3.1)
 readr        * 2.1.5      2024-01-10 [1] CRAN (R 4.3.1)
 recipes      * 1.0.9      2023-12-13 [1] CRAN (R 4.3.1)
 rlang          1.1.3      2024-01-10 [1] CRAN (R 4.3.1)
 rmarkdown      2.25       2023-09-18 [1] CRAN (R 4.3.1)
 ROSE           0.0-4      2021-06-14 [1] CRAN (R 4.3.0)
 rpart          4.1.21     2023-10-09 [1] CRAN (R 4.3.2)
 rprojroot      2.0.4      2023-11-05 [1] CRAN (R 4.3.1)
 rsample      * 1.2.0      2023-08-23 [1] CRAN (R 4.3.0)
 rstudioapi     0.15.0     2023-07-07 [1] CRAN (R 4.3.0)
 scales       * 1.3.0      2023-11-28 [1] CRAN (R 4.3.1)
 sessioninfo    1.2.2      2021-12-06 [1] CRAN (R 4.3.0)
 shape          1.4.6      2021-05-19 [1] CRAN (R 4.3.0)
 stringi        1.8.3      2023-12-11 [1] CRAN (R 4.3.1)
 stringr      * 1.5.1      2023-11-14 [1] CRAN (R 4.3.1)
 survival       3.5-7      2023-08-14 [1] CRAN (R 4.3.2)
 themis       * 1.0.2      2023-08-14 [1] CRAN (R 4.3.0)
 tibble       * 3.2.1      2023-03-20 [1] CRAN (R 4.3.0)
 tidymodels   * 1.1.1      2023-08-24 [1] CRAN (R 4.3.0)
 tidyr        * 1.3.0      2023-01-24 [1] CRAN (R 4.3.0)
 tidyselect     1.2.0      2022-10-10 [1] CRAN (R 4.3.0)
 tidyverse    * 2.0.0      2023-02-22 [1] CRAN (R 4.3.0)
 timechange     0.2.0      2023-01-11 [1] CRAN (R 4.3.0)
 timeDate       4032.109   2023-12-14 [1] CRAN (R 4.3.1)
 tune         * 1.1.2      2023-08-23 [1] CRAN (R 4.3.0)
 tzdb           0.4.0      2023-05-12 [1] CRAN (R 4.3.0)
 utf8           1.2.4      2023-10-22 [1] CRAN (R 4.3.1)
 vctrs          0.6.5      2023-12-01 [1] CRAN (R 4.3.1)
 vroom          1.6.5      2023-12-05 [1] CRAN (R 4.3.1)
 withr          3.0.0      2024-01-16 [1] CRAN (R 4.3.1)
 workflows    * 1.1.4      2024-02-19 [1] CRAN (R 4.3.1)
 workflowsets * 1.0.1      2023-04-06 [1] CRAN (R 4.3.0)
 xfun           0.41       2023-11-01 [1] CRAN (R 4.3.1)
 yaml           2.3.8      2023-12-11 [1] CRAN (R 4.3.1)
 yardstick    * 1.3.0      2024-01-19 [1] CRAN (R 4.3.1)

 [1] /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library

──────────────────────────────────────────────────────────────────────────────