<- decision_tree(engine = "rpart") |>
tree_mod set_mode("classification")
<- workflow() |>
tree_wf add_formula(children ~ .) |>
add_model(tree_mod)
Tune better models to predict children in hotel bookings
Suggested answers
Your Turn 1
Fill in the blanks to return the accuracy and ROC AUC for this model using 10-fold cross-validation.
Fill in the blanks to return the accuracy and ROC AUC for this model using 10-fold cross-validation.
set.seed(100)
|>
______ ______(resamples = hotels_folds) |>
______
Answer:
set.seed(100)
|>
tree_wf fit_resamples(resamples = hotels_folds) |>
collect_metrics()
# A tibble: 3 × 6
.metric .estimator mean n std_err .config
<chr> <chr> <dbl> <int> <dbl> <chr>
1 accuracy binary 0.773 10 0.00567 Preprocessor1_Model1
2 brier_class binary 0.158 10 0.00322 Preprocessor1_Model1
3 roc_auc binary 0.832 10 0.00672 Preprocessor1_Model1
Your Turn 2
Create a new parsnip model called rf_mod
, which will learn an ensemble of classification trees from our training data using the ranger package. Update your tree_wf
with this new model.
Fit your workflow with 10-fold cross-validation and compare the ROC AUC of the random forest to your single decision tree model — which predicts the test set better?
Hint: you’ll need https://www.tidymodels.org/find/parsnip/
# model
<- _____ |>
rf_mod _____("ranger") |>
_____("classification")
# workflow
<- tree_wf |>
rf_wf update_model(_____)
# fit with cross-validation
set.seed(100)
|>
_____ fit_resamples(resamples = hotels_folds) |>
collect_metrics()
Answer:
# model
<- rand_forest(engine = "ranger") |>
rf_mod set_mode("classification")
# workflow
<- tree_wf |>
rf_wf update_model(rf_mod)
# fit with cross-validation
set.seed(100)
|>
rf_wf fit_resamples(resamples = hotels_folds) |>
collect_metrics()
# A tibble: 3 × 6
.metric .estimator mean n std_err .config
<chr> <chr> <dbl> <int> <dbl> <chr>
1 accuracy binary 0.829 10 0.00332 Preprocessor1_Model1
2 brier_class binary 0.123 10 0.00176 Preprocessor1_Model1
3 roc_auc binary 0.912 10 0.00320 Preprocessor1_Model1
Your Turn 3
Challenge: Fit 3 more random forest models, each using 5, 12, and 21 variables at each split. Update your rf_wf
with each new model. Which value maximizes the area under the ROC curve?
<- rf_mod |>
rf5_mod set_args(mtry = 5)
<- rf_mod |>
rf12_mod set_args(mtry = 12)
<- rf_mod |>
rf21_mod set_args(mtry = 21)
Do this for each model above:
<- rf_wf |>
_____ update_model(_____)
set.seed(100)
|>
_____ fit_resamples(resamples = hotels_folds) |>
collect_metrics()
Answer:
# 5
<- rf_wf |>
rf5_wf update_model(rf5_mod)
set.seed(100)
|>
rf5_wf fit_resamples(resamples = hotels_folds) |>
collect_metrics()
# A tibble: 3 × 6
.metric .estimator mean n std_err .config
<chr> <chr> <dbl> <int> <dbl> <chr>
1 accuracy binary 0.829 10 0.00376 Preprocessor1_Model1
2 brier_class binary 0.122 10 0.00176 Preprocessor1_Model1
3 roc_auc binary 0.912 10 0.00305 Preprocessor1_Model1
# 12
<- rf_wf |>
rf12_wf update_model(rf12_mod)
set.seed(100)
|>
rf12_wf fit_resamples(resamples = hotels_folds) |>
collect_metrics()
# A tibble: 3 × 6
.metric .estimator mean n std_err .config
<chr> <chr> <dbl> <int> <dbl> <chr>
1 accuracy binary 0.831 10 0.00414 Preprocessor1_Model1
2 brier_class binary 0.123 10 0.00239 Preprocessor1_Model1
3 roc_auc binary 0.908 10 0.00418 Preprocessor1_Model1
# 21
<- rf_wf |>
rf21_wf update_model(rf21_mod)
set.seed(100)
|>
rf21_wf fit_resamples(resamples = hotels_folds) |>
collect_metrics()
# A tibble: 3 × 6
.metric .estimator mean n std_err .config
<chr> <chr> <dbl> <int> <dbl> <chr>
1 accuracy binary 0.827 10 0.00382 Preprocessor1_Model1
2 brier_class binary 0.125 10 0.00256 Preprocessor1_Model1
3 roc_auc binary 0.905 10 0.00438 Preprocessor1_Model1
Your Turn 4
Edit the random forest model to tune the mtry
and min_n
hyper-parameters; call the new model spec rf_tuner
.
Update your workflow to use the tuned model.
Then use tune_grid()
to find the best combination of hyper-parameters to maximize roc_auc
; let tune set up the grid for you.
How does it compare to the average ROC AUC across folds from fit_resamples()
?
<- rand_forest(engine = "ranger") |>
rf_mod set_mode("classification")
<- workflow() |>
rf_wf add_formula(children ~ .) |>
add_model(rf_mod)
set.seed(100) # Important!
<- rf_wf |>
rf_results fit_resamples(resamples = hotels_folds,
metrics = metric_set(roc_auc),
# change me to control_grid() with tune_grid
control = control_resamples(save_workflow = TRUE))
|>
rf_results collect_metrics()
# A tibble: 1 × 6
.metric .estimator mean n std_err .config
<chr> <chr> <dbl> <int> <dbl> <chr>
1 roc_auc binary 0.912 10 0.00320 Preprocessor1_Model1
Answer:
<- rand_forest(
rf_tuner engine = "ranger",
mtry = tune(),
min_n = tune()
|>
) set_mode("classification")
<- rf_wf |>
rf_wf update_model(rf_tuner)
set.seed(100) # Important!
<- rf_wf |>
rf_results tune_grid(resamples = hotels_folds,
control = control_grid(save_workflow = TRUE))
i Creating pre-processing data to finalize unknown parameter: mtry
Your Turn 5
Use fit_best()
to take the best combination of hyper-parameters from rf_results
and use them to predict the test set.
How does our actual test ROC AUC compare to our cross-validated estimate?
<- fit_best(rf_results)
hotels_best
# cross validated ROC AUC
|>
rf_results show_best(metric = "roc_auc", n = 5)
# A tibble: 5 × 8
mtry min_n .metric .estimator mean n std_err .config
<int> <int> <chr> <chr> <dbl> <int> <dbl> <chr>
1 3 15 roc_auc binary 0.910 10 0.00283 Preprocessor1_Model07
2 8 20 roc_auc binary 0.909 10 0.00376 Preprocessor1_Model10
3 7 36 roc_auc binary 0.908 10 0.00372 Preprocessor1_Model02
4 9 28 roc_auc binary 0.907 10 0.00381 Preprocessor1_Model01
5 12 21 roc_auc binary 0.907 10 0.00430 Preprocessor1_Model03
# test set ROC AUC
bind_cols(
hotels_test,predict(hotels_best, new_data = hotels_test, type = "prob")
|>
) roc_auc(truth = children, .pred_children)
# A tibble: 1 × 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 roc_auc binary 0.913
# test set ROC curve
bind_cols(
hotels_test,predict(hotels_best, new_data = hotels_test, type = "prob")
|>
) roc_curve(truth = children, .pred_children) |>
autoplot()
Acknowledgments
- Materials derived from Tidymodels, Virtually: An Introduction to Machine Learning with Tidymodels by Allison Hill.
- Dataset and some modeling steps derived from A predictive modeling case study and licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) License.
::session_info() sessioninfo
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.3.2 (2023-10-31)
os macOS Ventura 13.6.6
system aarch64, darwin20
ui X11
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz America/New_York
date 2024-04-25
pandoc 3.1.1 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
package * version date (UTC) lib source
archive 1.1.7 2023-12-11 [1] CRAN (R 4.3.1)
backports 1.4.1 2021-12-13 [1] CRAN (R 4.3.0)
bit 4.0.5 2022-11-15 [1] CRAN (R 4.3.0)
bit64 4.0.5 2020-08-30 [1] CRAN (R 4.3.0)
broom * 1.0.5 2023-06-09 [1] CRAN (R 4.3.0)
class 7.3-22 2023-05-03 [1] CRAN (R 4.3.2)
cli 3.6.2 2023-12-11 [1] CRAN (R 4.3.1)
codetools 0.2-19 2023-02-01 [1] CRAN (R 4.3.2)
colorspace 2.1-0 2023-01-23 [1] CRAN (R 4.3.0)
crayon 1.5.2 2022-09-29 [1] CRAN (R 4.3.0)
data.table 1.15.4 2024-03-30 [1] CRAN (R 4.3.1)
dials * 1.2.1 2024-02-22 [1] CRAN (R 4.3.1)
DiceDesign 1.10 2023-12-07 [1] CRAN (R 4.3.1)
digest 0.6.35 2024-03-11 [1] CRAN (R 4.3.1)
dplyr * 1.1.4 2023-11-17 [1] CRAN (R 4.3.1)
evaluate 0.23 2023-11-01 [1] CRAN (R 4.3.1)
fansi 1.0.6 2023-12-08 [1] CRAN (R 4.3.1)
farver 2.1.1 2022-07-06 [1] CRAN (R 4.3.0)
fastmap 1.1.1 2023-02-24 [1] CRAN (R 4.3.0)
forcats * 1.0.0 2023-01-29 [1] CRAN (R 4.3.0)
foreach 1.5.2 2022-02-02 [1] CRAN (R 4.3.0)
furrr 0.3.1 2022-08-15 [1] CRAN (R 4.3.0)
future 1.33.2 2024-03-26 [1] CRAN (R 4.3.1)
future.apply 1.11.2 2024-03-28 [1] CRAN (R 4.3.1)
generics 0.1.3 2022-07-05 [1] CRAN (R 4.3.0)
ggplot2 * 3.5.1 2024-04-23 [1] CRAN (R 4.3.1)
globals 0.16.3 2024-03-08 [1] CRAN (R 4.3.1)
glue 1.7.0 2024-01-09 [1] CRAN (R 4.3.1)
gower 1.0.1 2022-12-22 [1] CRAN (R 4.3.0)
GPfit 1.0-8 2019-02-08 [1] CRAN (R 4.3.0)
gtable 0.3.5 2024-04-22 [1] CRAN (R 4.3.1)
hardhat 1.3.1 2024-02-02 [1] CRAN (R 4.3.1)
here 1.0.1 2020-12-13 [1] CRAN (R 4.3.0)
hms 1.1.3 2023-03-21 [1] CRAN (R 4.3.0)
htmltools 0.5.8.1 2024-04-04 [1] CRAN (R 4.3.1)
htmlwidgets 1.6.4 2023-12-06 [1] CRAN (R 4.3.1)
infer * 1.0.7 2024-03-25 [1] CRAN (R 4.3.1)
ipred 0.9-14 2023-03-09 [1] CRAN (R 4.3.0)
iterators 1.0.14 2022-02-05 [1] CRAN (R 4.3.0)
jsonlite 1.8.8 2023-12-04 [1] CRAN (R 4.3.1)
knitr 1.45 2023-10-30 [1] CRAN (R 4.3.1)
labeling 0.4.3 2023-08-29 [1] CRAN (R 4.3.0)
lattice 0.21-9 2023-10-01 [1] CRAN (R 4.3.2)
lava 1.8.0 2024-03-05 [1] CRAN (R 4.3.1)
lhs 1.1.6 2022-12-17 [1] CRAN (R 4.3.0)
lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.3.1)
listenv 0.9.1 2024-01-29 [1] CRAN (R 4.3.1)
lubridate * 1.9.3 2023-09-27 [1] CRAN (R 4.3.1)
magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.3.0)
MASS 7.3-60 2023-05-04 [1] CRAN (R 4.3.2)
Matrix 1.6-1.1 2023-09-18 [1] CRAN (R 4.3.2)
modeldata * 1.3.0 2024-01-21 [1] CRAN (R 4.3.1)
modelenv 0.1.1 2023-03-08 [1] CRAN (R 4.3.0)
munsell 0.5.1 2024-04-01 [1] CRAN (R 4.3.1)
nnet 7.3-19 2023-05-03 [1] CRAN (R 4.3.2)
parallelly 1.37.1 2024-02-29 [1] CRAN (R 4.3.1)
parsnip * 1.2.1 2024-03-22 [1] CRAN (R 4.3.1)
pillar 1.9.0 2023-03-22 [1] CRAN (R 4.3.0)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.3.0)
prodlim 2023.08.28 2023-08-28 [1] CRAN (R 4.3.0)
purrr * 1.0.2 2023-08-10 [1] CRAN (R 4.3.0)
R6 2.5.1 2021-08-19 [1] CRAN (R 4.3.0)
ranger * 0.16.0 2023-11-12 [1] CRAN (R 4.3.1)
Rcpp 1.0.12 2024-01-09 [1] CRAN (R 4.3.1)
readr * 2.1.5 2024-01-10 [1] CRAN (R 4.3.1)
recipes * 1.0.10 2024-02-18 [1] CRAN (R 4.3.1)
rlang 1.1.3 2024-01-10 [1] CRAN (R 4.3.1)
rmarkdown 2.26 2024-03-05 [1] CRAN (R 4.3.1)
rpart * 4.1.21 2023-10-09 [1] CRAN (R 4.3.2)
rprojroot 2.0.4 2023-11-05 [1] CRAN (R 4.3.1)
rsample * 1.2.1 2024-03-25 [1] CRAN (R 4.3.1)
rstudioapi 0.16.0 2024-03-24 [1] CRAN (R 4.3.1)
scales * 1.3.0 2023-11-28 [1] CRAN (R 4.3.1)
sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.3.0)
stringi 1.8.3 2023-12-11 [1] CRAN (R 4.3.1)
stringr * 1.5.1 2023-11-14 [1] CRAN (R 4.3.1)
survival 3.5-7 2023-08-14 [1] CRAN (R 4.3.2)
tibble * 3.2.1 2023-03-20 [1] CRAN (R 4.3.0)
tidymodels * 1.2.0 2024-03-25 [1] CRAN (R 4.3.1)
tidyr * 1.3.1 2024-01-24 [1] CRAN (R 4.3.1)
tidyselect 1.2.1 2024-03-11 [1] CRAN (R 4.3.1)
tidyverse * 2.0.0 2023-02-22 [1] CRAN (R 4.3.0)
timechange 0.3.0 2024-01-18 [1] CRAN (R 4.3.1)
timeDate 4032.109 2023-12-14 [1] CRAN (R 4.3.1)
tune * 1.2.1 2024-04-18 [1] CRAN (R 4.3.1)
tzdb 0.4.0 2023-05-12 [1] CRAN (R 4.3.0)
utf8 1.2.4 2023-10-22 [1] CRAN (R 4.3.1)
vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.3.1)
vroom 1.6.5 2023-12-05 [1] CRAN (R 4.3.1)
withr 3.0.0 2024-01-16 [1] CRAN (R 4.3.1)
workflows * 1.1.4 2024-02-19 [1] CRAN (R 4.3.1)
workflowsets * 1.1.0 2024-03-21 [1] CRAN (R 4.3.1)
xfun 0.43 2024-03-25 [1] CRAN (R 4.3.1)
yaml 2.3.8 2023-12-11 [1] CRAN (R 4.3.1)
yardstick * 1.3.1 2024-03-21 [1] CRAN (R 4.3.1)
[1] /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library
──────────────────────────────────────────────────────────────────────────────